Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -0.96 THz
Phase diagram of Ti2Fe6Co3B2N; eabovehull: 0.301946 eV/atom; predicted_stable: False
Phase diagram of Fe6Co4B2N; eabovehull: 0.324374 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -1.25 THz
Phase diagram of MnVFe3Co3N2; eabovehull: 0.233388 eV/atom; predicted_stable: False
Phase diagram of MnFe4Co2NiN2; eabovehull: 0.114472 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.02 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.00 THz
Phase diagram of MnFe2CoN; eabovehull: 0.154637 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -7.41 THz
Phase diagram of MnFe4Co3N2; eabovehull: 0.111040 eV/atom; predicted_stable: False
Phase diagram of Mn3Fe10Co6N; eabovehull: 0.226573 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.04 THz
Phase diagram of Mn3Fe10Co6N; eabovehull: 0.226582 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.04 THz
Phase diagram of MnFe10Co6Ni2N; eabovehull: 0.137112 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.03 THz
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.05 THz
Phase diagram of Mn3Fe10Co6N; eabovehull: 0.234407 eV/atom; predicted_stable: False
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); imaginary modes detected; min freq = -0.35 THz