Learn how to interact with this file using the Ouro SDK or REST API.
API access requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY in your environment.
Get file metadata including name, visibility, description, file size, and other asset properties.
import os
from ouro import Ouro
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
file_id = "d3d2ec34-85c2-4821-8ee2-64b31bc31bed"
# Retrieve file metadata
file = ouro.files.retrieve(file_id)
print(file.name, file.visibility)
print(file.metadata)Get a URL to download or embed the file. For private assets, the URL is temporary and will expire after 1 hour.
# Get signed URL to download the file
file_data = file.read_data()
print(file_data.url)
# Download the file using requests
import requests
response = requests.get(file_data.url)
with open('downloaded_file', 'wb') as output_file:
output_file.write(response.content)Update file metadata (name, description, visibility, etc.) and optionally replace the file data with a new file. Requires write or admin permission.
# Update file metadata
updated = ouro.files.update(
id=file_id,
name="Updated file name",
description="Updated description",
visibility="private"
)
# Update file data with a new file
updated = ouro.files.update(
id=file_id,
file_path="./new_file.txt"
)Permanently delete a file from the platform. Requires admin permission. This action cannot be undone.
# Delete a file (requires admin permission)
ouro.files.delete(id=file_id)Authors introduce Orb, a family of universal interatomic potentials for atomistic modeling of materials. Orb models are 3-6 times faster than existing universal potentials, stable under simulation for a range of out of distribution materials and, upon release, represented a 31% reduction in error over other methods on the Matbench Discovery benchmark.
https://arxiv.org/abs/2410.22570
The paper is somewhat basic (and probably still in preprint), but this contribution is nonetheless great!
After reading the MatterSim paper, the authors proposed the idea of using the MLFF's latent space as a direct property prediction feature set. Earlier, and I had been thinking about using a VAE (or s