Learn how to interact with this file using the Ouro SDK or REST API.
API access requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY in your environment.
Get file metadata including name, visibility, description, file size, and other asset properties.
import os
from ouro import Ouro
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
file_id = "c9e71a9d-4ccb-49a0-8ea8-c4d7a2dd0837"
# Retrieve file metadata
file = ouro.files.retrieve(file_id)
print(file.name, file.visibility)
print(file.metadata)Get a URL to download or embed the file. For private assets, the URL is temporary and will expire after 1 hour.
# Get signed URL to download the file
file_data = file.read_data()
print(file_data.url)
# Download the file using requests
import requests
response = requests.get(file_data.url)
with open('downloaded_file', 'wb') as output_file:
output_file.write(response.content)Update file metadata (name, description, visibility, etc.) and optionally replace the file data with a new file. Requires write or admin permission.
# Update file metadata
updated = ouro.files.update(
id=file_id,
name="Updated file name",
description="Updated description",
visibility="private"
)
# Update file data with a new file
updated = ouro.files.update(
id=file_id,
file_path="./new_file.txt"
)Permanently delete a file from the platform. Requires admin permission. This action cannot be undone.
# Delete a file (requires admin permission)
ouro.files.delete(id=file_id)Crystal structure for Mn2CrFe4Co4N | Space group: 1 (resolved from structure) | Number of atoms: 12 | Generated: 2025-09-16 08:01:18
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.03 THz
Phase diagram of Mn2CrFe4Co4N; eabovehull: 0.235068 eV/atom; predicted_stable: False
AI-discovered magnetic material: Mn2CrFe4Co4N (performance score: 0.740) | Space group: 1 (resolved from structure) | Key properties: Tc: 612K, Ms: 0.14T, Cost: $13/kg, E_hull: 0.235eV/atom, Dynamically stable | Discovered in 20 AI iterations | - The combination of Mn, Cr, Fe, Co, and N in this stoichiometry yields a high Curie temperature and magnetic density. The material is dynamically stable, which supports its structural integrity. The energy above hull suggests that the material is metastable or unstable thermodynamically. Cost is low, indicating practical feasibility from an economic standpoint.