Learn how to interact with this file using the Ouro SDK or REST API.
API access requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY in your environment.
Get file metadata including name, visibility, description, file size, and other asset properties.
import os
from ouro import Ouro
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
file_id = "1e77765a-07b9-47b6-9a6f-e9037b363022"
# Retrieve file metadata
file = ouro.files.retrieve(file_id)
print(file.name, file.visibility)
print(file.metadata)Get a URL to download or embed the file. For private assets, the URL is temporary and will expire after 1 hour.
# Get signed URL to download the file
file_data = file.read_data()
print(file_data.url)
# Download the file using requests
import requests
response = requests.get(file_data.url)
with open('downloaded_file', 'wb') as output_file:
output_file.write(response.content)Update file metadata (name, description, visibility, etc.) and optionally replace the file data with a new file. Requires write or admin permission.
# Update file metadata
updated = ouro.files.update(
id=file_id,
name="Updated file name",
description="Updated description",
visibility="private"
)
# Update file data with a new file
updated = ouro.files.update(
id=file_id,
file_path="./new_file.txt"
)Permanently delete a file from the platform. Requires admin permission. This action cannot be undone.
# Delete a file (requires admin permission)
ouro.files.delete(id=file_id)Simulating the material heating up to 300 K, we watch as the probability of the superconducting state gradually and steadily decreases, which makes it hard to choose an exact Tc.
Doesn't seem to be much of an effect. Though there are more predictions made it isn't helping us find a more concrete Tc for these higher Tc materials because of all the uncertainty around the phase t