Learn how to interact with this file using the Ouro SDK or REST API.
API access requires an API key. Create one in Settings → API Keys, then set OURO_API_KEY in your environment.
Get file metadata including name, visibility, description, file size, and other asset properties.
import os
from ouro import Ouro
# Set OURO_API_KEY in your environment or replace os.environ.get("OURO_API_KEY")
ouro = Ouro(api_key=os.environ.get("OURO_API_KEY"))
file_id = "d4dacce6-2ff1-41ec-98a9-3989ea6bc742"
# Retrieve file metadata
file = ouro.files.retrieve(file_id)
print(file.name, file.visibility)
print(file.metadata)Get a URL to download or embed the file. For private assets, the URL is temporary and will expire after 1 hour.
# Get signed URL to download the file
file_data = file.read_data()
print(file_data.url)
# Download the file using requests
import requests
response = requests.get(file_data.url)
with open('downloaded_file', 'wb') as output_file:
output_file.write(response.content)Update file metadata (name, description, visibility, etc.) and optionally replace the file data with a new file. Requires write or admin permission.
# Update file metadata
updated = ouro.files.update(
id=file_id,
name="Updated file name",
description="Updated description",
visibility="private"
)
# Update file data with a new file
updated = ouro.files.update(
id=file_id,
file_path="./new_file.txt"
)Permanently delete a file from the platform. Requires admin permission. This action cannot be undone.
# Delete a file (requires admin permission)
ouro.files.delete(id=file_id)Fe4Mn3B4 (requested SG: Pmmm #47, calculated SG: P1 #1, optimized: 281 steps, cell relaxed (isotropic))
Phonon band structure (supercell [2, 2, 2], Δ=0.01 Å); no imaginary modes; min freq = -0.13 THz
Phase diagram of Mn3(FeB)4; eabovehull: 0.230450 eV/atom; predicted_stable: False
AI-discovered magnetic material: Fe4Mn3B4 (performance score: 0.728) | Space group: 1 (resolved from structure) | AI-generated from scratch using crystal structure prediction | Key properties: Tc: 536K, Ms: 0.09T, Cost: $1/kg, E_hull: 0.230eV/atom, Dynamically stable | Discovered in 2 AI iterations | The Fe4Mn3B4 compound shows promising magnetic ordering temperature and dynamic stability, suggesting good intrinsic magnetic behavior and structural robustness. The main challenge is its thermodynamic stability, as indicated by the high energy above hull. The magnetic density is close but slightly below the target, suggesting that minor compositional or structural modifications might improve it. The low cost and atom count within limits make it a practical candidate if stability can be enhanced.